When raw biomass is already in a suitable form (such as firewood), it can burn directly in a stove or furnace to provide heat or raise steam. When raw biomass is in an inconvenient form (such as sawdust, wood chips, grass, urban waste wood, agricultural residues), the typical process is to densify the biomass.
This process includes grinding the raw biomass to an appropriate particulate size (known as hogfuel), which, depending on the densification type, can be from 1 to 3 cm (0.4 to 1.2 in), which is then concentrated into a fuel product. The current processes produce wood pellets, cubes, or pucks. The pellet process is most common in Europe, and is typically a pure wood product. The other types of densification are larger in size compared to a pellet, and are compatible with a broad range of input feedstocks. The resulting densified fuel is easier to transport and feed into thermal generation systems, such as boilers.
Industry has used sawdust, bark and chips for fuel for decades, primary in the pulp and paper industry, and also bagasse (spent sugar cane) fueled boilers in the sugar cane industry.
Boilers in the range of 500,000 lb/hr of steam, and larger, are in routine operation, using grate, spreader stoker, suspension burning and fluid bed combustion. Utilities generate power, typically in the range of 5 to 50 MW, using locally available fuel. Other industries have also installed wood waste fueled boilers and dryers in areas with low cost fuel. One of the advantages of biomass fuel is that it is often a byproduct, residue or waste-product of other processes, such as farming, animal husbandry and forestry. In theory, this means fuel and food production do not compete for resources, although this is not always the case.
A problem with the combustion of raw biomass is that it emits considerable amounts of pollutants, such as particulates and polycyclic aromatic hydrocarbons. Even modern pellet boilers generate much more pollutants than oil or natural gas boilers. Pellets made from agricultural residues are usually worse than wood pellets, producing much larger emissions of dioxins and chlorophenols.
In spite of the above noted study, numerous studies have shown biomass fuels have significantly less impact on the environment than fossil based fuels. Of note is the US Department of Energy Laboratory, operated by Midwest Research Institute Biomass Power and Conventional Fossil Systems with and without CO2 Sequestration – Comparing the Energy Balance, Greenhouse Gas Emissions and Economics Study. Power generation emits significant amounts of greenhouse gases (GHGs), mainly carbon dioxide (CO2).